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1. Introduction

Letm, n be positive integers. The linear space of allm×n (complex) matrices will

be denoted by Cm×n. We will consider subspaces of Cm×n determined by a pattern

of zeros. Here is how these are defined.

Let Z be a binary relation between the sets M = {1, . . . ,m} and N = {1, . . . , n}

(later to be identified with a directed bipartite graph from M to N). With Z we

associate the subset Cm×n[Z] of the set Cm×n of all m × n (complex) matrices

consisting of all A = [ai,j ]
m,n
i=1,j=1 ∈ C

m×n such that ai,j = 0 whenever (i, j) /∈ Z.

Evidently, Cm×n[Z] is closed under scalar multiplication and addition. So, regardless

of additional properties of Z, the set Cm×n[Z] is a linear subspace of Cm×n.
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The question that we will consider is the following: Given A ∈ C
m×n[Z], a positive

integer p, and integers r1, . . . , rp satisfying

(1.1) 1 6 rj 6 rankA, j = 1, . . . , p, rankA 6 r1 + . . .+ rp,

does there exist a decomposition A = A1 + . . .+Ap such that

(1.2) Aj ∈ C
m×n[Z], rankAj = rj , j = 1, . . . , p?

Note here that the second part of (1.1) is a necessary condition for the rank part

of (1.2) to be fulfilled.

Generally, the answer to the above question is negative. Section 3 contains an

example demonstrating this. In the same section, a positive answer is formulated in

the main theorem of this paper featuring the condition that Z is L-free. This notion

is modeled after a concept that has been introduced in [3] for directed graphs. It

(also) plays a crucial role in [4] which is concerned with additive decompositions of

a type different from the one considered in the present setting. References to related

concepts featuring in the literature will be given in Section 2, where the necessary

terminological framework is developed and auxiliary observations are presented.

Section 4 is devoted to the proof of the main theorem referred to above. The section

also contains a couple of illustrative examples. A requirement leading to additional

conclusions is that in the second part of (1.1) equality instead of inequality is re-

quired. Such decompositions, named minimal, are discussed in Section 5. Attention

is also payed to the issue of how many minimal decompositions can exist. The

smallest number that can occur is described in terms of the so called Bell number,

but there are also situations, where it is infinite. Section 6, the final section of

the paper, consists of two subsections. In the first one, a norm optimization issue

for the decompositions considered here is raised. The second subsection has as its

background the fact that in the definition of L-freeness, the natural orders of the

underlying sets of nodes M = {1, . . . ,m} and N = {1, . . . , n} play a role. It is ex-

plained that, without giving up the main results of the paper, it is possible to relax

the definition so that it becomes order independent. In this context the challenge to

give a graph theoretical characterization presents itself.

2. Graph theoretical preparations and background

Let m and n be positive integers. The linear space of all m× n (complex) matri-

ces will be denoted by C
m×n. We will consider subspaces of Cm×n determined by

a pattern of zeros. Here is how these are defined.

WriteM = {1, . . . ,m} and N = {1, . . . , n}. The integers 1, . . . ,m constitutingM

correspond to the row numbers of matrices in Cm×n, the integers 1, . . . , n constitut-
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ing N to the column numbers. In this sense we may assumeM and N to be disjoint.

In line with this, a binary relation Z betweenM and N, i.e., a subset ofM×N, will

be viewed as a directed bipartite graph fromM to N. The directedness emphasizes

the fact that no reflexivity is assumed (in accordance with Z consisting of ordered

pairs). The notation k →Z l is employed to indicate that (k, l) ∈ Z. In the same

vein, k 9
Z l signals that (k, l) /∈ Z. If this happens to be convenient, l←Z k is used

instead of k →Z l.

With a directed bipartite graph Z as above, we associate the subset Cm×n[Z]

of Cm×n of all A = [ak,l]
m,n
k=1,l=1 ∈ C

m×n such that ak,l = 0 whenever k 9
Z l .

Evidently, Cm×n[Z] is closed under scalar multiplication and addition. So, regardless

of additional properties of Z, the set Cm×n[Z] is a linear subspace of Cm×n.

In line with [3] and [4], a quadruple (p, q, r, s) with p, q ∈M and r, s ∈ N is called

an L for Z if

(2.1) p→Z r ←Z q →Z s, p < q, r < s, p 9
Z s.

(Caveat: in expressions of this type, attention should be paid to the direction of the

arrows.) Here is an example illustrating the definition.

Example 2.1. Take m = 6 and n = 9, and let the directed bipartite graph Z

be given by the matrix diagram

Z =




1 2 3 4 5 6 7 8 9

1 ∗ 0 0 ∗ 0 ∗ 0 0 ∗

2 0 0 ∗ 0 0 ⋆ 0 0 0

3 ∗ 0 ∗ 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 ∗ 0 0 0 ⋆ 0 ⋆ 0

6 0 0 0 0 0 ∗ 0 0 ∗




.

Here a star or a zero at position (k, l) means that k →Z l or k 9
Z l, respectively.

Also, row and column numbers (corresponding to the nodes in the graph) are written

in italics. The quadruple (2, 5, 6, 8) is an L for Z (cf. the emphasized stars and zero).

Indeed, 2→ 6← 5→ 8 and 2 9 8.

An arrow diagram for the directed bipartite graph Z is

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6
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where the solid dots and the circles correspond respectively to the rows and the

columns in the matrix diagram (symbols also to be used later in similar contexts).

Note that in the matrix diagram, the L shape stands out prominently, whereas in

arrow diagram this is not the case. There it looks more like an N. As will become

apparent in the next paragraph, this is not by coincidence.

Circling back to the general situation, we say that Z is L-free if Z does not feature

any L. Thus, Z is L-free if and only if

p, q ∈M, r, s ∈ N

p→Z r ←Z q →Z s

p 6 q, r 6 s




⇒ p→Z s.

This definition is modeled after a notion that has appeared in the literature earlier,

actually in the context of working with directed graphs. The concept in question is

that of being N-free, cf. [8]. In the present situation it directly translates into requir-

ing that Z has no N’s, an N being a quadruple (p, q, r, s) with p, q ∈M and r, s ∈ N

satisfying

(2.2) p→Z r ←Z q →Z s, p 6= q, s 6= r, p 9Z s.

In other words, Z is N-free if and only if

p→Z r ←Z q →Z s

p 6= q, r 6= s

}
⇒ p→Z s.

Clearly, each L for Z is an N. The converse in not true, however. As a matter of

fact, the quadruple (2, 3, 3, 1) is an N but not an L for the directed bipartite graph Z

considered in Example 2.1.

Obviously, the property of being N-free implies that of being L-free. But, as is

easily seen, the converse is not true, cf. Example 3 in [4].

The difference between (2.1) and (2.2) is that in (2.1), reference is made to the

(standard) linear orders on the ground sets M and N, whereas this is not the case

in (2.2). Thus, for N-freeness, the specific form of the ground set is irrelevant.

As was mentioned, N-freeness was delineated as a property of directed graphs, or

equivalently, as a property on a binary relation on a single ground setK = {1, . . . , k}.

For a characterization of N-free partial orders in terms of the so called Hasse dia-

gram (cf. [6]), see Theorem 2 in [8]. Other notions that are closely related to the

concept of being L-free are in-ultra transitivity and out-ultra transitivity, pertain-

ing again to directed graphs, and introduced in [1] and [2]. The first of these also
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contains a characterization in terms of the Hasse diagram. A characterization of

a similar type seems to be out of reach for L-free partial order, cf. the last two

paragraphs of Subsection 3.2 in [4].

3. Main theorem: formulation and relevance

of the L-freeness assumption

If A is a matrix, the expressions rankA, ImA and KerA denote the rank, image

and null space of A, respectively. The main result of this paper now reads as follows.

Theorem 3.1. Let m,n be positive integers, let Z be a directed bipartite graph

from M = {1, . . . ,m} to N = {1, . . . , n}, and suppose Z is L-free. Then, given

a nonzero matrix A in C
m×n[Z] and positive integers p, r1, . . . , rp satisfying

rj 6 rankA, j = 1, . . . , p, rankA 6 r1 + . . .+ rp,

there exists a decomposition A = A1 + . . .+Ap such that

Al ∈ C
m×n[Z], rankAl = rl, l = 1, . . . , p,(3.1)

ImA = ImA1 + . . .+ ImAp, KerA = KerA1 ∩ . . . ∩KerAp.(3.2)

The condition that the given matrix A is nonzero is imposed in order to avoid

trivialities. The proof of the theorem will be given in the next section. Here we will

make clear, by means of an example, that the requirement that Z is L-free, cannot

simply be missed. The example is also of significance for Theorem 5.1 in Section 5,

which is concerned with what we shall call minimal decompositions.

Example 3.1. For n = 3, 4, 5, . . . , let the directed bipartite graph Z be given

by the matrix diagram

(3.3) Z =




1 2 3 . . . . . . n

1 ∗ 0 0 . . . 0 ∗

2 ∗ ∗ 0 0

3 0 ∗ ∗ 0
...

...
...
. . .

. . .
. . .

. . .
...

...
... 0 ∗ ∗ 0

n 0 . . . . . . 0 ∗ ∗




,

which can also be depicted by an arrow diagram, e.g. for the case n = 5,
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15

4

3

5

4 3

2

1

in which, as before, the solid dots and the circles correspond respectively to the rows

and the columns in the matrix diagram.

Note that Z is not L-free. Indeed, each of the n− 1 quadruples

(1, 2, 1, 2), (2, 3, 2, 3), . . . , ((n− 1), n, (n− 1), n)

is an L for Z.

Introduce the (circulant) matrix

A =




1 0 0 . . . 0 −1

−1 1 0 0

0 −1 1 0
...

...
. . .

. . .
. . .

. . .
...

... 0 −1 1 0

0 . . . . . . 0 −1 1




.

Clearly A ∈ C
n×n[Z], the null space of A has dimension one and correspondingly,

rankA = n − 1. We claim that A cannot be written as a sum of n − 1 rank one

matrices A1, . . . , An−1 having the required zero pattern, i.e., belonging to C
n×n[Z].

Here is the argument.

Suppose A = A1+ . . .+An−1 and the matrices Ak = [a
(k)
ij ]ni,j=1 belong to C

n×n[Z]

for k = 1, . . . , n − 1. Considering the n diagonal entries of A, we obtain the n

equations,

a
(1)
ii + a

(2)
ii + . . .+ a

(n−1)
ii = 1, 1 6 i 6 n.

In each of these n equations at least one of the n − 1 summands must be nonzero.

Therefore, by the pigeonhole principle, there exists an integer k among 1, . . . , n− 1

such that at least two of the diagonal entries of Ak are nonzero, say

a
(k)
ii 6= 0, a

(k)
jj 6= 0,

with 1 6 i < j 6 n.
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Since Ak is assumed to have the zero pattern determined by Z in (3.3) and n > 3,

it follows that at least one of a
(k)
ij or a

(k)
ji is zero. On the other hand, Ak having rank

one implies that the submatrix of Ak obtained by deleting all but the ith and jth

rows and columns, that is
[
a
(k)
ii a

(k)
ij

a
(k)
ji a

(k)
jj

]
,

must have rank at most one, too. However, the above statements imply that its

determinant a
(k)
ii a

(k)
jj − a

(k)
ji a

(k)
ij = a

(k)
ii a

(k)
jj 6= 0 is nonzero. And with this we have

reached a contradiction.

4. Main theorem: proof and illustrative example

This section is devoted to the proof of Theorem 3.1, the main result in this paper.

For the purpose of adequate presentation it is divided into a couple of subsections.

In the final one of these, the material will be illustrated with an example.

4.1. Decomposition ensembles and distribution schemes. Let p, r, r1, . . . , rp
be positive integers. The (p+2)-tuple E = (p, r; r1, . . . , rp) is called a decomposition

ensemble if

rj 6 r, j = 1, . . . , p, r 6 r1 + . . .+ rp.

Clearly, this definition is motivated by Theorem 3.1.

Lemma 4.1. Let E = (p, r; r1, . . . , rp) be a decomposition ensemble. Then there

exists a matrix Λ = [λl,j ]
p,r
l=1,j=1 ∈ C

p×r such that in each column of Λ the entries

add up to 1, while for l = 1, . . . , p the number of nonvanishing entries in the lth row

of Λ is equal to rl.

Such a matrix is called a distribution scheme associated with E .

From the proof as given below it will appear that there is always a distribu-

tion scheme associated with E having rational entries, even being positive whenever

nonzero. It will also become clear that generally, one can associate many different

distribution schemes with a given decomposition ensemble. Anticipating on what

we will see in Section 5, we mention here already that there is an exception to this

standard state of affairs: when r = r1 + . . . + rp, there is just one scheme modulo

the trivial changes brought about by column permutations.
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P r o o f. As r1 6 r, there exist integers t among 1, . . . , p such that r1+. . .+rt 6 r.

Write s for the largest of these and introduce

θl,j =





0, j = 1, . . . , r1 + . . .+ rl−1,

1, j = r1 + . . .+ rl−1 + 1, . . . , r1 + . . .+ rl,

0, j = r1 + . . .+ rl + 1, . . . , r,

l = 1, . . . , s,

θl,j =

{
0, j = 1, . . . , r − rl,

1, j = r − rl + 1, . . . , r,
l = s+ 1, . . . , p.

Then Θ = [θl,j ]
p,r
l=1,j=1 is a real (in fact a zero/one) matrix, and for l = 1, . . . , p,

the lth row of Θ contains precisely rl nonzero entries (all equal to 1). Also, in each

column the entries add up to a positive integer.

Now let Ω = [ωl,j]
p,r
l=1,j=1 be a complex matrix with nonzero entries and satisfying

ω1,jθ1,j + . . .+ ωp,jθp,j = 1, j = 1, . . . , r.

Further introduce

λl,j = ωl,jθl,j , l = 1, . . . , p, j = 1, . . . , r.

Then Λ = [λl,j ]
p,r
l=1,j=1 has the desired features.

Perhaps needless to point out, but there does exist a matrix Ω with the properties

required above. Indeed, one can take

ωl,j =
1

θ1,j + . . .+ θp,j
, l = 1, . . . , p, j = 1, . . . r.

This choice leads to a distribution scheme associated with E having rational entries,

even being positive whenever nonzero. �

We illustrate the foregoing with an example.

Example 4.1. Let E = (6, 7; 4, 2, 2, 5, 3, 1). Then E is a decomposition ensemble.

Note that r1 + r2 = 6 < 7 = r and r1 + r2 + r3 = 8 > 7 = r. So s = 2, using the

notation of the proof of Lemma 4.1. In line with what we did there, we now produce

the 6× 7 matrix

Θ =




1 1 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 1 1

0 0 1 1 1 1 1

0 0 0 0 1 1 1

0 0 0 0 0 0 1




.
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The corresponding column sums are 1, 1, 2, 2, 3, 4, 4. Using their inverses as

multiplication factors for the respective columns, we obtain

Λ =




1 1
1

2

1

2
0 0 0

0 0 0 0
1

3

1

4
0

0 0 0 0 0
1

4

1

4

0 0
1

2

1

2

1

3

1

4

1

4

0 0 0 0
1

3

1

4

1

4

0 0 0 0 0 0
1

4




,

which is, indeed, a distribution scheme associated with E .

Other schemes can, of course, be obtained by permuting columns. This, by far,

does not exhaust all possibilities. Just by way of example, we exhibit




1 1 −4 + i −1 + 31 0 0 0

0 0 0 0 −3− 4i −4 0

0 0 0 0 0 2 −3 + i

0 0 5 + i 2− 3i 5 −3 5 + 4i

0 0 0 0 −1 + 4i 6 −1

0 0 0 0 0 0 −5i




,

involving complex numbers, some of them nonreal.

4.2. Lean forms. LetM be anm×n matrix. Here m and n are positive integers.

We say that M is in lean form or alternatively, has lean column structure if the

nonzero columns of M are linearly independent. This, of course, implies that the

number of nonzero columns of M is equal to the rank of M . If M happens to be

the m× n zero matrix, then M is in lean form (trivially).

Let A be an arbitrarym×n matrix. Then A can be brought in lean form, without

changing its rank, via multiplication on the right with a suitable upper triangu-

lar n × n matrix. A simple Gaussian elimination type procedure for doing this is

as follows. Write A = [a1 . . . an] with a1, . . . , an ∈ C
n being the columns of A. For

l = 1, . . . , n, we leave the lth column of A unchanged whenever al is not a linear com-

bination of the columns a1, . . . , al−1 preceding al; otherwise we replace al by a zero

column. (Here, of course, a vector is a linear combination of an empty collection of
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columns if and only if it is the zero vector. In this way, the case l = 1 is covered

without ambiguity.) The resulting matrix Â certainly has lean column structure,

and its rank is equal to that of A. Also, Â can be written in the form AÛ with Û

a monic n× n matrix, i.e., an upper triangular matrix with ones on the diagonal.

Generally this is not the only way to bring A in lean form. For proving Theo-

rem 3.1, it needs to be done in a special manner. This is the motivation for the next

lemma, which is crucial for what follows. A square matrix is said to be monic if it

is upper triangular and all its diagonal entries are equal to one.

Lemma 4.2. Let Z be an L-free directed bipartite graph from M = {1, . . . ,m}

to N = {1, . . . , n}. Then given A ∈ C
m×n[Z], there exists a monic n× n matrix U

such that AU is in lean form, AU ∈ C
m×n[Z], and AUDU−1 ∈ C

m×n[Z] for every

diagonal n× n matrix D.

A direct proof of Lemma 4.2 is possible but very cumbersome, not in the least

notationally. Therefore, we will take advantage of Theorem 4.2 in [4] in the proof of

which these complications have already been dealt with, following up on the material

in [5], highly intricate in its own right. Theorem 4.2 in [4] has an upper triangularity

aspect to it. Thus, falling back on it involves an embedding trick of a type also

employed in [3] and [4].

All in all, the argument is of a constructive nature and provides an algorithm for

obtaining the matrix U . This is relevant for constructing decompositions of the type

considered in Theorem 3.1 in concrete examples.

P r o o f. Write A = [ai,j ]
m,n
i=1,j=1, put k = m+ n and introduce the square matrix

Â = [âi,j ]
k
i,j=1 via

âi,j =

{
ai,j−m, i = 1, . . . ,m and j = m+ 1, . . . , k,

0, i = m+ 1, . . . , k or j = 1, . . . ,m.

In other words,

(4.1) Â =

[
0 A

0 0

]
.

With the directed bipartite graph Z we now associate a directed graph Ẑ with

ground set K = {1, . . . , k}. In suggestive shorthand

(4.2) Ẑ =

(
0 Z

0 0

)
,

analogously to (4.1). More precisely, using the notation →
Ẑ
for the arrows deter-

mining Ẑ,

i, j ∈ K, i→
Ẑ
j if and only if i ∈M, j ∈ K \M, i→Z (j −m).
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By assumption Z is an L-free directed bipartite graph. For the directed graph Ẑ this

translates into
p→

Ẑ
r ←

Ẑ
q →

Ẑ
s

p < q, r < s

}
⇒ p→

Ẑ
s.

This means that Ẑ is L-free as this was defined for directed graphs in [4]. Again

borrowing terminology from [4], we also observe that Ẑ is of upper triangular type,

meaning that i 9
Ẑ
j for all i, j ∈ K, i > j.

Theorem 4.2 in [4] – specialized to the situation, where the blocks are scalar, i.e.,

have size 1×1 – now guarantees the existence of a monic k×k matrix Û such that ÂÛ

is in lean form, ÂÛ ∈ C
k×k[Ẑ] and ÂÛD̂Û−1 ∈ C

k×k[Ẑ] for every diagonal k × k

matrix D̂. The remainder of the argument consists of translating this back to the

originally given matrix A and directed bipartite graph Z.

In line with (4.1) and (4.2), and taking into account that Û is upper triangular,

we decompose Û as

Û =

[
U− U+

0 U

]
.

Identifying U with an n× n matrix, which is then clearly monic, one gets

ÂÛ =

[
0 AU

0 0

]
,

implying that AU has lean form and belongs to Cm×n[Z].

Finally, let D ∈ C
n×n be a diagonal matrix, and introduce

D̂ =

[
0 0

0 D

]
.

Then D̂ is (more precisely, can be identified with) a diagonal k × k matrix, and so

ÂÛD̂Û−1 ∈ C
k×k[Ẑ]. Straightforward computation gives

ÂÛD̂Û−1 =

[
0 A

0 0

] [
U− U+

0 U

] [
0 0

0 D

] [
U−1
− −U−1

− U+U
−1

0 U−1

]
=

[
0 AUDU−1

0 0

]
,

and it follows that AUDU−1 ∈ C
m×n[Z], as was claimed. �

The L-freeness requirement in Lemma 4.2 is essential. This appears from the

following example.

Example 4.2. Let the directed bipartite graph Z and A ∈ C
3×3 be given by

(4.3) Z =




1 2 3

1 ∗ 0 ∗

2 ∗ ∗ 0

3 0 ∗ ∗


 , A =



1 0 1

1 −1 0

0 1 1


 .
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Then A ∈ C
3×3[Z] and Z is not L-free. The latter can, of course, be checked directly,

but can also be read off from Example 3.1 (case n = 3). We shall make clear that

with this choice for Z and A there is no matrix U with the properties mentioned in

Lemma 4.2.

Suppose there is one, say

U =



1 x y

0 1 z

0 0 1


 .

By assumption AU ∈ C
3×3[Z], i.e.,



1 x y + 1

1 x− 1 y − z

0 1 z + 1


 ∈ C

3×3[Z],

and it ensues that x = 0 and y = z. From this we get

U =



1 0 y

0 1 y

0 0 1


 =



1 0 −y

0 1 −y

0 0 1



−1

, AU =



1 0 y + 1

1 −1 0

0 1 y + 1


 .

Now, again by hypothesis, the matrix AU has lean column structure, yielding y = −1

and

U =



1 0 −1

0 1 −1

0 0 1


 =



1 0 1

0 1 1

0 0 1



−1

, AU =



1 0 0

1 −1 0

0 1 0


 .

Write D for the 3 × 3 diagonal matrix having one at the first diagonal position and

zero at the two others. Then

(4.4) AUDU−1 =



1 0 1

1 0 1

0 0 0


 .

This matrix has a nonzero entry in the position (2, 1), hence it does not belong

to C3×3[Z].

We close this subsection with another comment on Lemma 4.2. Considering the

situation of the lemma, involving an L-free graph, the following question arises. Can

it happen that for some monic n× n matrix U , the matrix AU is lean and belongs

to C
m×n[Z] while, nevertheless, there does exist an n × n diagonal matrix D such

that AUDU−1 fails to be in C
m×n[Z]? Clearly, such a matrix U has to be different

from the one whose existence is guaranteed by Lemma 4.2. As will appear from

Example 4.3 in Subsection 4.4, the answer is affirmative.
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4.3. Proof of main result. In the situation of Theorem 3.1, writing r for the

(positive) rank of the given matrix A, the (p+ 2)-tuple E = (p, r; r1, . . . , rp) is a de-

composition ensemble. By Lemma 4.1, there exists a distribution scheme associated

with E . Choose one, Λ = [λl,j ]
p,r
l=1,j=1, say. Further, referring to Lemma 4.2, we

take U to be a monic n×n matrix such that AU is in lean form, AU ∈ C
m×n[Z], and

AUDU−1 ∈ C
m×n[Z] for every diagonal n×n matrix D. Using these ingredients we

shall construct an additive decomposition of A of the type indicated in Theorem 3.1.

Put B = AU . The nonvanishing columns in B are linearly independent, hence the

number of them is rankB = rankA = r. Let us denote their positions by l1, . . . , lr,

taken in standard order, so l1 < . . . < lr. Also write u1, . . . , un for the standard unit

vectors in C
n. Clearly

(4.5) B =

r∑

j=1

Bulju
⊤
ll
= B

r∑

j=1

ulju
⊤
ll
.

Note that ulju
⊤
lj
is the diagonal n×n matrix having zeros on the diagonal except for

the ljth position, where the entry is 1. Thus, Bulju
⊤
ll
is the matrix obtained from B

by leaving the ljth column intact and replacing all the others by zero columns. Hence,

along with B, the matrix Bulju
⊤
ll
belongs to Cm×n[Z].

For k = 1, . . . , p, introduce

(4.6) Bk =

r∑

j=1

λk,jBulju
⊤
lj
.

The matrices B1, . . . , Bp have (positive) rank r1, . . . , rp, respectively, and they belong

to Cm×n[Z]. Also B = B1 + . . .+Bp. For this we argue as follows.

Let t be one of the integers 1, . . . , n. Then, employing the Kronecker delta nota-

tion, ( p∑

k=1

Bk

)
ut =

p∑

k=1

r∑

j=1

λk,jBulju
⊤
lj
ut =

p∑

k=1

r∑

j=1

λk,jδlj ,tBulj ,

and hence

( p∑

k=1

Bk

)
ut =





0, t 6= l1, . . . , lr,
p∑

k=1

λk,sBuls , t = ls, s = 1, . . . , r,

=





But, t 6= l1, . . . , lr,( p∑

k=1

λk,s

)
But, t = ls, s = 1, . . . , r.
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The sum in the latter expression is equal to 1, and we conclude that

( p∑

k=1

Bk

)
ut = But.

As t was taken arbitrarily among 1, . . . , p, it ensues that B = B1 + . . .+Bp, indeed.

We have now obtained a decomposition of B = AU in which the summands

B1, . . . , Bp have rank r1, . . . , rp, respectively, and are in C
m×n[Z]. For k = 1, . . . , p,

define Ak = BkU
−1. Then A = (AU)U−1 = A1+. . .+Ap, and this is a decomposition

of A involving terms A1, . . . , Ap having rank r1, . . . , rp, respectively. Later we shall

see that these terms feature the desired zero pattern. But first we consider their

images and null spaces.

For k = 1, . . . , p, we have ImBk ⊂ ImB. This is clear from the definition of Bk

via (4.6). Evidently, ImAk = ImBk and ImA = ImB. Thus,

ImA1 + . . .+ ImAp = ImB1 + . . .+ ImBp ⊂ ImB = ImA.

Also ImA ⊂ ImA1 + . . . + ImAp because A = A1 + . . . + Ap, and it follows that

ImA1 + . . .+ ImAp = ImA.

Next we look at the null spaces of A and A1, . . . , Ap. Again taking into account

the identity A = A1 + . . .+Ap, it ensues that

KerA1 ∩ . . . ∩KerAp ⊂ KerA.

Let x ∈ KerA, and put y = U−1x, so that By = 0. Write B = [Bu1 . . . Bun] and

y = [y1 . . . yn]
⊤. Then y1Bu1+. . . ynBun = 0. The columns of B not in the positions

l1, . . . , lr vanish, hence yl1Bul1+. . .+ylrBulr = 0. Also Bul1+. . .+Bulr are linearly

independent, it entails that ylj , . . . , ylr vanish. But then

Bky =
r∑

j=1

λk,jBulju
⊤
lj
y =

r∑

j=1

λk,jyljBulj = 0, k = 1, . . . , p.

Recalling that Ak = BkU
−1 and y = U−1x, we arrive at Akx = Bky = 0, i.e.,

x ∈ KerAk, which is what we wanted to establish.

It remains to prove that A1, . . . , Ap ∈ C
m×n[Z]. Take k among 1, . . . , p, and define

the diagonal n× n matrix by Dk = λk,1ul1u
⊤
l1
+ . . .+ λk,rulru

⊤
lr
. Then AUDlU

−1 is

in C
m×n[Z]. On the other hand,

Ak = BkU
−1 =

( r∑

j=1

λk,jBulju
⊤
lj

)
U−1 = B

( r∑

j=1

λk,julju
⊤
lj

)
U−1 = AUDkU

−1,

and the upshot is that Ak ∈ C
m×n[Z], as desired. �

838



4.4. Example. We illustrate what we did in the preceding subsections with an

elucidating example. It will underscore that a special monic matrix U is needed to

bring the given matrix A in lean form. The crux lies here in the necessity to have

AUDU−1 in C
m×n[Z] whenever D is a diagonal matrix, as stated in Lemma 4.2.

The example will also exhibit a concrete decomposition of A obtained along the

lines suggested by the proof of Theorem 3.1 the way it is given in the preceding

subsection.

Example 4.3. Let the directed bipartite graph Z and the matrix A be given by

Z =




1 2 3 4 5 6 7

1 ∗ ∗ 0 ∗ ∗ ∗ ∗

2 0 0 ∗ 0 ∗ ∗ ∗

3 0 0 ∗ 0 ∗ ∗ ∗

4 0 ∗ 0 ∗ ∗ 0 ∗

5 ∗ ∗ 0 0 0 0 ∗




, A =




1 3 0 1 3 0 5

0 0 1 0 2 3 6

0 0 2 0 4 6 6

0 1 0 1 3 0 2

1 2 0 0 0 0 1




with the zero entries forced upon A by the required zero pattern emphasized. Then Z

is L-free and A ∈ C
5×7[Z]. We first bring A in lean form via the procedure described

in the second paragraph of Subsection 4.2. Note that the columns of A at the

positions 1, 2, 3 and 7 are linearly independent. So the rank four matrix

Â =




1 3 0 0 0 0 5

0 0 1 0 0 0 6

0 0 2 0 0 0 6

0 1 0 0 0 0 2

1 2 0 0 0 0 1




has lean column structure. Introducing the monic matrix

Û =




1 0 0 2 6 0 0

0 1 0 −1 −3 0 0

0 0 1 0 −2 −3 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




=




1 0 0 −2 −6 0 0

0 1 0 1 3 0 0

0 0 1 0 2 3 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




−1

we have Â = AÛ ∈ C
5×7[Z].

Now let D̂ be the diagonal 7× 7 matrix having all diagonal entries equal to zero,

except for the second, which is one. Straightforward calculation shows that the last
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row in AÛD̂Û−1 = ÂD̂Û−1 is [ 0 2 0 2 6 0 0 ]. But then AÛD̂Û−1 fails to

be in C
5×7[Z]. Note that we have a validation here of the comment on Lemma 4.2

made at the end of Subsection 4.2.

As we see, the straightforward approach taken above, fails to bring in a crucial

element of Lemma 4.2. Indeed, the lemma guarantees the existence of a monic

7 × 7 matrix U such that not only AU is in lean form and AU ∈ C
5×7[Z], but also

AUDU−1 ∈ C
5×7[Z] for every diagonal n × n matrix D. In the present situation,

it is not completely trivial to identify such a matrix. It can be done by using the

material developed in [4].

Leaving the details for what they are, we give the end result, namely the matrix

U =




1 −2 0 2 6 0 3

0 1 0 −1 −3 0 −2

0 0 1 0 −2 −3 −3

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




,

yielding for B = AU ∈ C
5×7[Z] and U−1

B =




1 1 0 0 0 0 2

0 0 1 0 0 0 3

0 0 2 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0



, U−1 =




1 2 0 0 0 0 1

0 1 0 1 3 0 2

0 0 1 0 2 3 3

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




.

Note that, indeed, B is in C
5×7[Z] and has lean column structure.

Suppose we are looking for an additive decomposition of A = A1 +A2 +A3 +A4,

involving summands A1, A2, A3, A4 belonging to A ∈ C
5×7[Z], and having

rank 3, 3, 2, 1, respectively. Theorem 3.1 assures that such decompositions ex-

ist. Here is how we can get one in concrete form.

Let E be the decomposition ensemble (4, 4; 3, 3, 2, 1), and let

(4.7) Λ =




λ1,1 λ1,2 λ1,3 λ1,4

λ2,1 λ2,2 λ2,3 λ2,4

λ3,1 λ3,2 λ3,3 λ3,4

λ4,1 λ4,2 λ4,3 λ4,4
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be a distribution schemes associated with E . For k = 1, 2, 3, 4, in line with the

expression (4.6), introduce

Bk = λk,1Bu1u
⊤
1 + λk,2Bu2u

⊤
2 + λk,3Bu3u

⊤
3 + λk,4Bu7u

⊤
7

and put Ak = BkU
−1, i.e.,

(4.8) Ak =




λk,1 2λk,1 + λk,2 0 λk,2 3λk,2 0 λk,1 + 2λk,2 + 2λk,4

0 0 λk,3 0 2λk,3 3λk,3 3λk,3 + 3λk,4

0 0 2λk,3 0 4λk,3 6λk,3 6λk,3

0 λk,2 0 λk,2 3λk,2 0 2λk,2

λk,1 2λk,1 0 0 0 0 λk,1



.

Then A = A1 + A2 + A3 + A4 is a decomposition of A respecting the zero pattern

and having the desired rank characteristics.

Specializing the right-hand side of (4.7) to

(4.9)




1

3

1

3

1

2
0

0
1

3

1

2
1

1

3

1

3
0 0

1

3
0 0 0




,

we obtain concrete numerical instances for A1, A2, A3, A4, namely

A1 =
1

6




2 6 0 2 6 0 6

0 0 3 0 6 9 9

0 0 6 0 12 18 18

0 2 0 2 6 0 4

2 4 0 0 0 0 2



, A2 =

1

6




0 2 0 2 6 0 16

0 0 3 0 6 9 27

0 0 6 0 12 18 18

0 2 0 2 6 0 4

0 0 0 0 0 0 0



,

A3 =
1

3




1 3 0 1 3 0 3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 1 3 0 2

1 2 0 0 0 0 1



, A4 =

1

3




1 2 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 2 0 0 0 0 1



.

Inspection confirms that A = A1 + A2 + A3 + A4 with A1, A2, A3, A4 belonging

to C5×7[Z] and having rank 3, 3, 2, 1, respectively. Also it can be checked by hand

that
ImA = ImA1 + ImA2 + ImA3 + ImA4

KerA = KerA1 ∩KerA2 ∩KerA3 ∩KerA4,

which was to be expected in view of Theorem 3.1.

841



5. Minimal decompositions

In this section we consider decompositions that are minimal in the sense that the

ranks of the summands add up exactly to the rank of the given matrix.

5.1. Decomposition under minimality requirements. Let m, n be positive

integers, and suppose A ∈ C
m×n. Consider a decomposition A = A1 + . . . + Ap

with p a positive integer and A1, . . . , Ap nonzero matrices in C
m×n. Then, clearly,

rankA 6 rankA1+. . .+rankAp, and we have equality here as the extreme possibility.

In that case, when

rankA = rankA1 + . . .+ rankAp,

we call the decomposition minimal. This obviously implies that p cannot exceed

rankA and that rankAj 6 rankA, j = 1, . . . , p.

Theorem 5.1. Let m, n be positive integers, let Z be a directed bipartite

graph from M = {1, . . . ,m} to N = {1, . . . , n}, and suppose Z is L-free. Then,

given A in Cm×n[Z], a positive integer p (not exceeding rankA) and positive integers

r1, . . . , rp satisfying rankA = r1 + . . . + rp, there exists a minimal decomposition

A = A1 + . . .+Ap such that

(1) A1, . . . , Ap belong to C
m×n[Z], are linearly independent, and have rank

r1, . . . , rp, respectively,

(2) ImA is the direct sum of ImA1, . . . , ImAp, and KerA is the interlaced inter-

section of KerA1, . . . ,KerAp.

By saying that a subspace N of a linear space X is the interlaced intersection of

the subspaces N1, . . . , Np of X we mean that N = N1 ∩ . . . ∩Np and

X = Ns + (N1 ∩ . . . ∩Ns−1 ∩Ns+1 + . . . ∩Np), s = 1, . . . , p.

Recall that a subspace R of X is the direct sum of the subspaces R1, . . . , Rp of X if

R = R1 + . . .+Rp and

{0} = Rs ∩ (R1 + . . .+Rs−1 + Rs+1 + . . .+Rp), s = 1, . . . , p.

Thus, the notion of an interlaced intersection is, so to speak, the intersection coun-

terpart of the familiar concept of a direct sum.

P r o o f. The proof is a continuation of the argument given in Subsection 4.3. So

we elaborate on this argument under the additional assumption that the positive

integers r1, . . . , rp add up to r, where r = rankA.
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Recall that Λ = [λl,j ]
p,r
l=1,j=1 is a distribution scheme associated with the decom-

position ensemble E = (p, r, r1, . . . , rp). For l = 1, . . . , p, let Λl be the set of all j

among 1, . . . , r such that λl,j 6= 0. Then the cardinality ♯Λl of Λl is equal to rl. Now

take k in {1, . . . , r}. By assumption, λ1,k + . . . + λp,k = 1, and so the terms in the

sum cannot all vanish. Thus, k ∈ Λl for some l among 1, . . . , p, and we conclude

that {1, . . . , r} is the union of the (nonempty) sets Λ1, . . . ,Λp. But then

{1, . . . , r} =

p⋃

l=1

(Λl \ (Λ1 ∪ . . . ∪ Λl−1))

as well. This, however, is a disjoint union, so

r =

p∑

l=1

♯(Λl \ (Λ1 ∪ . . . ∪ Λl−1)) 6

p∑

l=1

♯Λl =

p∑

l=1

rl = r.

From this we get

Λj \ (Λ1 ∪ . . . ∪ Λj−1) = Λj , j = 1, . . . , r,

and it follows that {1, . . . , r} is not only the union, but in fact the disjoint union of

the (nonempty) sets Λ1, . . . ,Λp.

We can prove even more. Take j in Λl, where l is one of the integers 1, . . . , p.

Then λl,j 6= 0. For t = 1, . . . , p, t 6= l, we have that Λl ∩ Λt = ∅, therefore λt,j = 0.

But λ1,j + . . .+ λp,j = 1, and it ensues that λl,j = 1. Thus, the nonzero entries of Λ

are all equal to 1. Also each column of Λ contains precisely one nonzero entry, which

is equal to 1.

For B as in Subsection 4.3, we have B = AU with U as in Lemma 4.2. Also, the

matrices B1, . . . , Bp are given by (4.6), so in the present situation

Bk =

r∑

j=1

λk,jBulju
⊤
lj
=

∑

j∈Λk

Bulju
⊤
lj

with l1, . . . , lp being the consecutive positions of the nonzero columns in the matrixB.

As {1, . . . , r} is the disjoint union of the sets Λ1, . . . ,Λp, we have, using (4.5),

p∑

k=1

Bk =

p∑

k=1

∑

j∈Λk

Bulju
⊤
lj
= B

r∑

j=1

ulju
⊤
lj
= B.

Further, B1, . . . , Bp belong to C
m×n[Z] and have rank r1, . . . , rp, respectively. As B

is in lean form, its nonzero columns Bul1 , . . . , Bulr are linearly independent vectors

in Cm. It immediately follows thatB1, . . . , Bp are linearly independent and that ImB
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is the direct sum of ImB1, . . . , ImBp. The conclusion that KerA is the interlaced

intersection of KerA1, . . . ,KerAp can be reached by a straightforward expansion of

the reasoning contained in the all but last paragraph of Subsection 4.3.

For k = 1, . . . , p, define Ak = BkU
−1. Then A = BU−1 = A1 + . . . + Ap, and

this is a decomposition of A involving linearly independent terms A1, . . . , Ap from

C
m×n[Z] having rank r1, . . . , rp, respectively. Thus, statement (1) in the theorem

that we are proving is correct. Claim (2) holds as well. This is immediate from the

validity of the corresponding assertions for the decomposition B = B1 + . . . + Bp.

The minimality of the decomposition A = A1 + . . . + Ap stems directly from the

assumption rankA = r1 + . . .+ rp. �

Just as this was the case for Theorem 3.1, the L-freeness hypothesis cannot be

missed in Theorem 5.1. In fact, the example which was used to make this clear (see

Example 3.1 from Section 3) is concerned with a minimal decomposition in the sense

considered here.

A simple instance of a minimal decomposition can be obtained from Example 4.3,

replacing the decomposition ensemble (4, 4; 3, 3, 2, 1) there by (3, 4; 1, 2, 1), and the

distribution scheme (4.9) by, for instance,



0 1 0 0

1 0 0 1

0 0 1 0


 .

We refrain from working out the details. Instead, we move on to the next subsection,

where examples of minimal decompositions will come up too.

5.2. Counting minimal decompositions and examples. Let us circle back

to Theorem 5.1 and its proof. Fix a monic matrix U with the properties indicated in

Lemma 4.2. Then, corresponding to every distribution scheme Λ = [λl,j ]
p,r
l=1,j=1, the

given matrix A ∈ C
m×n[Z] admits a minimal decomposition involving summands

having the properties mentioned in the theorem. Different schemes may give rise to

the same decompositions, that is, if a simple change in the order of the terms is not

counted as a difference. Such a change corresponds to a permutation of the rows of

the scheme. Now take into account the special character of the distribution schemes

here at hand, as exhibited in the second paragraph of the proof of Theorem 5.1.

This gives that there is a one-to-one correspondence between partitions of the set

{1, . . . , r} into nonempty subsets on the one hand and the minimal decompositions

we are interested in on the other. Thus, counting the minimal decompositions of the

type obtained in the proof of Theorem 5.1 comes down to counting the number of

partitions of the set {1, . . . , r} into nonempty subsets. As is well-known, the outcome

is the rth Bell number (in the literature usually denoted by Br).
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Looking at the counting issue more closely, let p be a positive integer among

1, . . . , r. Then the number of minimal decompositions involving p terms, again of

the type obtained in the proof of Theorem 5.1, is equal to the number of partitions

of the set {1, . . . , r} involving p nonempty subsets. This is the so called Stirling

partition number (written {n
p
}). The sum of these numbers for p ranging from 1

to r is (of course) equal to the rth Bell number mentioned above. For details about

these special numbers, see [7], [9] and [10]. They play a role too in counting issues

dealt with in [2] and [3].

The matrix U featuring in the preceding paragraph is not uniquely determined. So

letting it range through different possibilities might add to the number of minimal

decompositions one obtains. We will now present two examples featuring totally

different outcomes, in fact from uniqueness of the ‘right multiplier’ U to a situation,

where the number of minimal decompositions is infinite.

Example 5.1. Let the directed bipartite graph Z and A ∈ C
3×3 be given by

(5.1) Z =




1 2 3

1 0 ∗ ∗

2 ∗ ∗ ∗

3 ∗ ∗ 0


 , A =



0 1 1

1 0 1

1 −1 0


 .

Then Z is L-free, A belongs to C
3×3[Z] and the rank of A is 2. Take p = 2 and

r1 = r2 = 1. Then the conditions imposed on p, r1, r2 in Theorem 5.1 (form = n = 3

and rankA = 2) are met. In accordance with the theorem, there exist matrices

A1, A2 ∈ C
3×3[Z], both of rank one and such that A = A1 +A2. Indeed,

(5.2) A =



0 1 1

1 0 1

1 −1 0


 =



0 0 0

1 −1 0

1 −1 0


+



0 1 1

0 1 1

0 0 0


 ,

and this is a minimal decomposition. The linear independence of the summands and

statement (2) of Theorem 5.1 narrowed down to the situation here at hand, can be

easily checked directly.

The minimal decomposition (5.2) can be obtained via the route indicated in the

proofs of Theorems 3.1 and 5.1. The distribution scheme in question is
[
1 0

0 1

]
,

and for the monic right multiplier U , one can (in fact must — as we will see later)

take

U =



1 1 −1

0 1 −1

0 0 1


 =



1 −1 0

0 1 1

0 0 1



−1

,
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resulting in the matrix

AU =



0 1 0

1 1 0

1 0 0


 ,

which, indeed, has lean column structure, belongs to C
3×3[Z], and has the addi-

tional property that AUDU−1 ∈ C
3×3[Z] for every diagonal 3×3 matrix D. Indeed,

with u1, u2 and u3 standing, respectively, for the first, second and third unit vector

in C
3×3,

AUu1u
⊤
1 U

−1 =



0 0 0

1 −1 0

1 −1 0


 , AUu2u

⊤
2 U

−1 =



0 1 1

0 1 1

0 0 0


 ,

while AUu3u
⊤
3 U

−1 = 0.

Anticipating on what we will do in a moment, we mention that (5.2) is the only

(minimal) decomposition of A involving two rank one terms from C
3×3[Z]. Here,

as already indicated, decompositions are identified when they can be obtained from

each other by reordering of the summands.

Taking into account that, trivially, A = A is a minimal decomposition of A,

we conclude that there are precisely two minimal decompositions of A involving

summands from C
3×3[Z]. This fits with the fact that the second Bell number is

(obviously) equal to two.

Let us now address the uniqueness claim put forward above. SupposeA(1) and A(2)

are rank one matrices in C
3×3[Z] adding up to A, and write

A(1) =




0 a
(1)
1,2 a

(1)
1,3

a
(1)
2,1 a

(1)
2,2 a

(1)
2,3

a
(1)
3,1 a

(1)
3,2 0


 , A(2) =




0 a
(2)
1,2 a

(2)
1,3

a
(2)
2,1 a

(2)
2,2 a

(2)
2,3

a
(2)
3,1 a

(2)
3,2 0


 .

As a
(1)
3,1 + a

(2)
3,1 = 1, we may assume without loss of generality that a

(1)
3,1 6= 0. Consider

the submatrix of A1 obtained by deleting the second row and the second column,

and observe that its rank is (at most) one. Hence, a
(1)
1,3 = 0. A similar reasoning

gives a
(1)
1,2 = a

(1)
2,3 = 0. But then

A(1) =




0 0 0

a
(1)
2,1 a

(1)
2,2 0

a
(1)
3,1 a

(1)
3,2 0


 , A(2) =




0 1 1

a
(2)
2,1 a

(2)
2,2 1

a
(2)
3,1 a

(2)
3,2 0


 .
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Bringing into play that A(2) has rank one, we get

A(1) =



0 0 0

1 −1 0

1 −1 0


 = A1, A(2) =



0 1 1

0 1 1

0 0 0


 = A2,

as desired.

We now come back to the uniqueness of the right multiplier U already claimed in

passing above. Suppose the monic matrix

V =



1 v1,2 v1,3

0 1 v2,3
0 0 1




is such that AV is in lean form and the matrices

AV, AV u1u
⊤
1 V

−1, AV u2u
⊤
2 V

−1, AV u3u
⊤
3 V

−1

all belong to C3×3[Z]. We shall prove that V = U . Here is the argument.

Multiplying A and V gives

AV =



0 1 v2,3 + 1

1 v1,2 v1,3 + 1

1 v1,2 − 1 v1,3 − v2,3


 .

The first two columns of this matrix are linearly independent. So, as AV has lean

column structure, the third column of AV has to vanish. Thus, v1,3 = v2,3 = −1 and

V =



1 v1,2 −1

0 1 −1

0 0 1


 , AV =



0 1 0

1 v1,2 0

1 v1,2 − 1 0


 .

The latter matrix already belongs to C3×3[Z], so this requirement does not impose

a restriction on v1,2. As is easily checked, the inverse of V is given by

V −1 =



1 −v1,2 1− v1,2
0 1 1

0 0 1


 ,
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and it follows that

AV u1u
⊤
1 V

−1 =



0 0 0

1 −v1,2 1− v1,2
1 −v1,2 1− v1,2


 .

This matrix should be in C
3×3[Z]. This yields v1,2 = 1 with in its wake

V =



1 1 −1

0 1 −1

0 0 1




in other words V = U , as claimed.

In the preceding example, the number of different minimal decompositions is two,

so a fortiori it is finite. As we will now see, this need not be the case.

Example 5.2. Let the directed bipartite graph Z and A ∈ C
3×3 be given by

Z =




1 2 3

1 0 ∗ ∗

2 ∗ ∗ ∗

3 ∗ ∗ 0


 , A =



0 0 0

1 0 0

0 1 0


 .

Note that Z is the same graph as the one featuring in Example 5.1. As already

observed there, it is L-free. Obviously, the matrix A belongs to C3×3[Z].

Again take p = 2 and r1 = r2 = 1, so that the conditions imposed on p, r1, r2
in Theorem 5.1 (for m = n = 3 and r = 2) are met. In sharp contrast to what we

encountered in Example 5.1, there are now infinitely many minimal decompositions

of A involving two terms from C
3×3[Z]. Indeed, the decompositions of this type can

be parameterized as

(5.3) A =



0 0 0

1 0 0

0 1 0


 =




0 0 0

1− α −β 0

−γ α 0


+



0 0 0

α β 0

γ 1− α 0




with α, β and γ scalars such that α2 − α+ βγ = 0. Here is how this can be seen.

Suppose α, β and γ are scalars as indicated in the previous paragraph. Then (5.3)

is a minimal decomposition of A involving two rank one summands from C
3×3[Z].

The linear independence of the summands and statement (2) of Theorem 5.1, spe-

cialized to the situation here at hand, can be easily verified by inspection.
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Conversely, suppose A = A(1) +A(2) is a decomposition of the type under consid-

eration, and write

A(1) =




0 a
(1)
1,2 a

(1)
1,3

a
(1)
2,1 a

(1)
2,2 a

(1)
2,3

a
(1)
3,1 a

(1)
3,2 0


 , A(2) =




0 a
(2)
1,2 a

(2)
1,3

a
(2)
2,1 a

(2)
2,2 a

(2)
2,3

a
(2)
3,1 a

(2)
3,2 0


 .

Then

A =



0 0 0

1 0 0

0 1 0


 =




0 a
(1)
1,2 a

(1)
1,3

a
(1)
2,1 a

(1)
2,2 a

(1)
2,3

a
(1)
3,1 a

(1)
3,2 0


+




0 a
(2)
1,2 a

(2)
1,3

a
(2)
2,1 a

(2)
2,2 a

(2)
2,3

a
(2)
3,1 a

(2)
3,2 0


 .

Clearly a
(2)
2,1a

(2)
3,2 = a

(2)
2,2a

(2)
3,1. Also, as a

(1)
2,1 + a

(2)
2,1 = 1, we may assume without loss

of generality that a
(1)
2,1 6= 0. Inspection of appropriately chosen submatrices yields

a
(1)
1,2 = a

(1)
1,3 = 0, and we get

A =



0 0 0

1 0 0

0 1 0


 =




0 0 0

1− a
(2)
2,1 −a

(2)
2,2 −a

(2)
2,3

−a
(2)
3,1 1− a

(2)
3,2 0


+




0 0 0

a
(2)
2,1 a

(2)
2,2 a

(2)
2,3

a
(2)
3,1 a

(2)
3,2 0


 .

Considering the submatrices in the summands A(1) and A(2) obtained from deleting

the first row and the first column, we conclude that −a
(2)
2,3(1 − a

(2)
3,2) = 0 = a

(2)
2,3a

(2)
3,2,

and thus a
(2)
2,3 = 0, leading to

A =



0 0 0

1 0 0

0 1 0


 =




0 0 0

1− a
(2)
2,1 −a

(2)
2,2 0

−a
(2)
3,1 1− a

(2)
3,2 0


+




0 0 0

a
(2)
2,1 a

(2)
2,2 0

a
(2)
3,1 a

(2)
3,2 0


 .

Now introduce α = a
(2)
2,1, β = a

(2)
2,2, γ = a

(2)
3,1 and δ = a

(2)
3,2. As the summands in the

above expression supposedly are of rank one, we have

(1− α)(1 − δ) = βγ, αδ = βγ,

and these imply that δ = 1 − α, which can be rewritten as a
(2)
3,2 = 1 − α. With this,

we have arrived at the desired form (5.3).

How does all of this relate to the way minimal decompositions were obtained in

the proof of Theorem 5.1? Here is the pertinent analysis.

Let

U =



1 x y

0 1 z

0 0 1


 =



1 −x xz − y

0 1 −z

0 0 1



−1
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be a monic matrix. Then

AU =



0 0 0

1 x y

0 1 z


 .

This matrix belongs to C3×3[Z] and has lean form if and only if y = z = 0.

Suppose this is the case, so

U =



1 x 0

0 1 0

0 0 1


 , U−1 =



1 −x 0

0 1 0

0 0 1


 , AU =



0 0 0

1 x 0

0 1 0


 .

Write u1 and u2 for the first and second standard unit vector in C
3×3. What we want

to have is that AUu1u
⊤
1 U

−1 and AUu2u
⊤
2 U

−1 belong to C3×3[Z]. Straightforward

computation shows that

AUu1u
⊤
1 U

−1 =



0 0 0

1 −x 0

0 0 0


 , AUu2u

⊤
2 U

−1 =



0 0 0

0 x 0

0 1 0


 ,

and these matrices do indeed belong to C3×3[Z]. The resulting minimal decomposi-

tion of A, involving two rank one matrices in C
3×3[Z], is

A =



0 0 0

1 −β 0

0 0 0


+



0 0 0

0 β 0

0 1 0




with β = x. This fits with (5.3): just take α = 0, γ = 0 and δ = 1.

So we see that following the path of the proof of Theorem 5.1 gives only a subset

of the collection of all minimal decompositions. In a sense, this is not surprising.

Indeed, the approach in the present paper, following the set up in [4] and [5], is

column based, and it is also possible to work on a row basis. This would give

minimal decompositions of the type (5.3) with α = 0, β = 0, δ = 1, i.e.,

A =




0 0 0

1 0 0

−γ 0 0


+



0 0 0

0 0 0

γ 1 0


 .

These can also be obtained by taking transposes.

Thus, with the approach via lean forms, we find the minimal decompositions of A,

involving two rank one terms, of the form

A =



0 0 0

1 0 0

0 1 0


 =




0 0 0

1 −β 0

−γ 0 0


+



0 0 0

0 β 0

γ 1 0
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with β or γ equal to zero. Evidently this does not exhaust all possibilities. For

instance, the decomposition

A =



0 0 0

1 0 0

0 1 0


 =




0 0 0

−3 −6 0

2 4 0


+




0 0 0

4 6 0

−2 −3 0




is not covered. It is obtained from (5.3) by taking α = 4, β = 6 and γ = −2, scalars

that are easily seen to satisfy the identity α2 − α+ βγ = 0.

The above example warrants the conclusion that a set up giving all possible min-

imal decompositions meeting the zero pattern requirement should go beyond the

approach utilizing lean forms. As the paragraph directly below Lemma 4.2 suggests,

this is most probably a highly challenging matter.

6. Concluding remarks and open problems

In this section, we finish the paper with some remarks leading to issues open for

further research.

6.1. Norm optimization of distribution schemes. The distribution scheme

given by (4.9) in Example 4.3 has nonnegative rational entries not exceeding one.

We could have used one having integer entries, such as

(6.1) Λ =




4 4 2 0

0 −2 −1 1

−2 −1 0 0

−1 0 0 0


 .

This would have resulted in a decomposition which is not essentially different from

the one we obtained via (4.9). The drawback, however, is that with this ‘integer

approach’ the summands in the decomposition will generally have larger norms, as-

suming of course that we think of the underlying matrix algebra as being equipped

with one of the usual norms. One can drive this to extremes by employing distribu-

tion schemes featuring entries with comparatively large absolute values, such as

(6.2) Λ =




4.10100 + 4 4.10100 + 4 101000 + 2 0

0 −2.10100 − 2 −101000 − 1 1

−2.10100 − 2 −2.10100 − 1 0 0

−2.10100 − 1 0 0 0




for instance. From the point of view of working with norms there is an optimization

issue here.
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6.2. Permutation L-freeness. As before, let m, n be positive integers, and

let Z be a binary relation between the sets M = {1, . . . ,m} and N = {1, . . . , n}.

The notion of being L-free depends on the natural order of M and N. In the last

paragraph of Section 2, it has been indicated that this forms an obstacle for an

adequate characterization. As has been mentioned there, this is different for the less

general concept of N-freeness, which is purely graph theoretical.

This state of affairs leads to the following definition. Let Z and Z ′ be two directed

bipartite graphs fromM to N. We say that Z is permutation equivalent to Z ′ if the

matrix diagram for Z can be obtained from the matrix diagram for Z ′ by reordering

of the rows and by reordering of the columns. Thus, Z is permutation equivalent

to Z ′ if, using a suggestive notation, Z = PZ ′Q for certain permutation matrices P

and Q of order m and n, respectively.

Evidently Z is permutation equivalent to Z ′ if and only if Z ′ is permutation

equivalent to Z. Also, in that case, if A,A′ ∈ C
m×n, then A ∈ C

m×n[Z] if and only

if P−1AQ−1 ∈ C
m×n[Z ′].

We call the directed bipartite graph Z permutation L-free if it is permutation

equivalent to a directed bipartite graph which is L-free. Note that this property does

not depend on the natural orders ofM andN. So permutation L-freeness is a genuine

graph theoretical concept. Also observe that (trivially) each L-free bipartite graph

is permutation L-free. The following simple example shows that the converse does

not hold.

Example 6.1. Let the directed bipartite graphs Z and Z ′ be given by the matrix

diagrams

(6.3) Z =




1 2 3 4

1 ∗ 0 0 0

2 ∗ ∗ 0 ∗

3 ∗ 0 ∗ ∗


 , Z ′ =




1 2 3 4

1 0 ∗ ∗ ∗

2 ∗ ∗ ∗ 0

3 0 ∗ 0 0


 .

Then Z is obtained from Z ′ by interchanging the first and the third row, and also

interchanging the first and the second column as well as the third and the fourth.

Hence, Z is permutation equivalent to Z ′. Inspection shows that Z ′ is L-free but Z

is not. So Z is a permutation L-free bipartite graph which fails to be L-free.

The relevance of the new notion lies in the fact that the main results in this

paper, Theorems 3.1 and 5.1, remain true when the requirement of L-freeness for

the given directed bipartite graph Z is replaced by the condition that it is per-

mutation L-free. The argument showing this is straightforward and left to the

reader.
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The directed graph in Example 3.1 is not permutation L-free. This is clear from

the fact that the graph in question does not allow for the conclusion of Theorem 3.1.

It can also be verified directly, especially for the situation where n = 3 and (3.3) is

the graph featuring in Example 4.2, namely




1 2 3

1 ∗ 0 ∗

2 ∗ ∗ 0

3 0 ∗ ∗


 ,

1 2 3

1 2 3

where the solid dots and the circles correspond, respectively, to the rows and the

columns in the matrix diagram. This direct verification, which can be done in several

ways, e.g., by checking 36 cases, is left to the reader.

We close this subsection (and the paper) by putting forward another open issue.

As has been indicated, permutation L-freeness is a genuine graph theoretical notion

in the sense that it does not rely on the order of the underlying sets of nodes. Is

it possible to characterize the concept without direct reference to L-freeness? Con-

cretely, the arrow diagram for the graph Z in Example 6.1 is

1 2 3 4

1 2 3

where, again, the solid dots and the circles correspond, respectively, to the rows and

the columns in the first matrix diagram in (6.3). How to read off from this arrow

diagram that the graph in question is permutation L-free?
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